Principal Common Divisors of Graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integral Cayley Graphs Defined by Greatest Common Divisors

An undirected graph is called integral, if all of its eigenvalues are integers. Let Γ = Zm1 ⊗· · ·⊗Zmr be an abelian group represented as the direct product of cyclic groups Zmi of order mi such that all greatest common divisors gcd(mi,mj) ≤ 2 for i 6= j. We prove that a Cayley graph Cay(Γ, S) over Γ is integral, if and only if S ⊆ Γ belongs to the the Boolean algebra B(Γ) generated by the subg...

متن کامل

Graphs and Zero-divisors

In an algebra class, one uses the zero-factor property to solve polynomial equations. For example, consider the equation x 2 = x. Rewriting it as x (x − 1) = 0, we conclude that the solutions are x = 0, 1. However, the same equation in a different number system need not yield the same solutions. For example, in Z 6 (the integers modulo 6), not only 0 and 1, but also 3 and 4 are solutions. (Chec...

متن کامل

Approximate Integer Common Divisors

We show that recent results of Coppersmith, Boneh, Durfee and Howgrave-Graham actually apply in the more general setting of (partially) approximate common divisors. This leads us to consider the question of “fully” approximate common divisors, i.e. where both integers are only known by approximations. We explain the lattice techniques in both the partial and general cases. As an application of ...

متن کامل

Consecutive Integers with Equally Many Principal Divisors

Classifying the positive integers as primes, composites, and the unit, is so familiar that it seems inevitable. However, other classifications can bring interesting relationships to our attention. In that spirit, let us classify positive integers by the number of principal divisors they possess, where we define a principal divisor of a positive integer n to be any prime-power divisor pa|n which...

متن کامل

Approximate common divisors via lattices

We analyze the multivariate generalization of Howgrave-Graham’s algorithm for the approximate common divisor problem. In the m-variable case with modulus N and approximate common divisor of size Nβ , this improves the size of the error tolerated from Nβ 2 to Nβ (m+1)/m , under a commonly used heuristic assumption. This gives a more detailed analysis of the hardness assumption underlying the rec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 1993

ISSN: 0195-6698

DOI: 10.1006/eujc.1993.1012